ASCA- Conference: Adelaide, 2015

Ensuring current and future secondary students gain positive benefits from the Australian Curriculum: A matter of linking key educational theory with grounded practice at the classroom level

Dr Allen Campbell, Department for Education and Child Development South Australia
Welcome

• Overview
 – Introduction
 – Links between Educational Theory and Australian Curriculum: *Implications for teaching, assessment and reporting*
 – “The Theorists”- *Progress through conversation*
 – Research to classroom: *going into bat for the students*
 – Driving Improvement: *reality tougher than the theory*
 – What's out there?
 – Quality of Monitoring and Assessment dependent on effective Task Design
 – Lessons from the field
 – Activity: *A Spanish Conversation*...
 – In conclusion...
Introduction

Background and current role

Reasons and intent of workshop

Importance of revered and proven theory making its way to each student

Investigate multiple ways that allow a mix of messages and elements from various theories entry into the classroom by informing the practical applications of teachers – *schooling not schools*...

Effective design and construction of assessment tasks and monitoring conversations with individual students are essential to ensure students gain their entitlement in relation to the Australian Curriculum

Employ and consume a ‘quid’ and conversation approach
Yes, correct..
The typical adolescence pill, which happens to be the size of a mango seed...takes almost 8 to 10 years to dissolve...

Sense of fairness
Ground swell driven by students – student voice = ongoing intervention
Going ‘into bat’ for the students: ensuring student voice and ongoing intervention

Assessment Matters Report 2014 USA
5/5/14
Students, teachers, and administrators all agree that learning needs to be the focus and they all agree on what works to improve learning –especially students themselves. Teachers and administrators have different perceptions and levels of understanding about the role of assessment in their work, and students demonstrate a more nuanced and sophisticated understanding of assessment than their teachers believe.

- See more at: https://www.nwea.org/resources/assessment-matters-report-2014/#sthash.SWJH64SB.dpuf
RECOMMENDATIONS

From the survey data, five recommendations emerge that will place the focus where it belongs—on student learning:

1. District administrators, educators and policymakers need to engage students in policy development processes, especially when making testing mandates at the state, district and classroom levels.

 Students are remarkably savvy about tests. They recognize that testing plays a vital role in education; they care about their performance and try hard on tests. They value assessments that are relevant to them, provide timely, meaningful feedback and help them learn. Many students—and their families—are in the dark about new state assessments as well as other new and different kinds of assessments. They want to be informed and engaged.

 Recommendation: Educators can help close gaps between student perceptions and knowledge and educator practices by using formative assessment, timely feedback to students and joint goal setting. Educators and district administrators should formally solicit student input as they implement education policies and assessment mandates.

2. Design assessment priorities in support of teaching and learning.

 Remarkable alignment exists among the views of students, teachers and district administrators regarding the effective use of assessment; yet all say they are spending too much of their time responding to initiatives that focus elsewhere. Formative assessment also emerges as having the most positive impact on learning; yet it’s least understood and not widely practiced.

 Recommendation: Federal, state and district dollars should be reallocated to focus assessment initiatives on informing teaching and learning. Alternate and less costly methodologies for obtaining accountability data should be explored.

3. Establish formal learning opportunities on assessment literacy for every teacher, principal and building administrator.

 Assessment literacy, in teacher preparation and professional development, is a significant area of need, especially since teachers’ communications are most important to students and parents regarding testing.

 Among educators, students and parents, there are substantial gaps in the understanding of different types and purposes of assessment, as well as in the value and usefulness of assessments. This lack of understanding may be fueled by contentious dialogue that is making headlines. At the same time, states and districts are using assessment data to scrutinize every aspect of education. New educators entering the profession are ill-equipped to use assessment data to inform their practice. Students and parents need help navigating the different types of assessment and the purposes they serve. Armed with that knowledge, they can advocate effectively for high-quality assessment that supports student learning.

 Recommendation: First, a common vocabulary should be developed for the different types of assessment. Teacher preparation programs and professional development initiatives should focus on assessment literacy, using that common vocabulary, to increase knowledge of the subject and its terms, communicate better with students, parents and other educators and use assessment data more effectively to drive student learning.
Going ‘into bat’ for the students: **ensuring student voice and ongoing careful intervention:** A matter of entitlement not a slug…
Links between Educational Theory and the Australian Curriculum: *Implications for teaching, assessment and reporting*

Notion of entitlement - National level

Propositions shaping the Australian Curriculum

16. The development of the Australian Curriculum is shaped by the following propositions.

a) The Australian Curriculum recognises the entitlement of each student to knowledge, understanding and skills that provide a foundation for successful and lifelong learning and participation in the Australian community.

b) The Australian Curriculum is presented as a continuum of learning that makes clear to teachers what is to be taught across the years of schooling. It makes clear what students should learn and the quality of learning expected of them as they progress through school.
Links between Educational Theory and the Australian Curriculum: *Implications for teaching, assessment and reporting*

Notion of entitlement - State level

DECD schools have the flexibility within the context and parameters of the policy and these guidelines to provide a curriculum that reflects their local context and recognises the learning entitlement of all students.

The guidelines are also informed by the learning principles provided by the *South Australian Teaching for Effective Learning (TfEL) Framework* which supports teachers in how to design teaching and learning.

* Guidelines for the implementation of the Australian Curriculum in DECD schools: Reception–Year 10 | June 2013 | © Department for Education and Child Development, p. 4
Links between Educational Theory and the Australian Curriculum: *Implications for teaching, assessment and reporting*

Notion of entitlement - student level

- Not a school entitlement
- Not a teacher entitlement
- Not a principal entitlement
- A student entitlement
Links between Educational Theory and the Australian Curriculum: *Implications for teaching, assessment and reporting*

Notion of driving improvement through developing student self-efficacy

- Different types of goals: Mastery goals around incremented approach to gain expertise in new context
- Responses to challenge: the power of *yet* to avoid learned helplessness
- Attribution of failure and success: engage incrementally in remedial action
- Self-regulated learning: take feedback and channel that into determination to try new strategies
Links between Educational Theory and the Australian Curriculum: Implications for teaching, assessment and reporting

Understanding of the effects on self-efficacy on students’ behaviour

- *Choice of tasks- options within tasks*
- *Persistence at tasks*
- *Sources of self-efficacy:*
 - prior experiences
 - need for ongoing monitoring and assessment
 - watching others’ experience mastery
 - *social messages and persuasion*
- *Acceptance of making on-balanced judgements based on assessment tasks design that enables students demonstrate both the achievement standard and relevant content descriptions and allows students to demonstrate a broad range of achievement*
Links between Educational Theory and the Australian Curriculum: *Implications for teaching, assessment and reporting*

Safeguard for students, it’s important teachers:

Use of an appropriate mix of messages and elements from various theories and detailed of the theory knowledge of the content descriptions and achievement standard in their learning areas/subjects as a means to make learning-unit-task design manageable for teachers and reflects their local context and recognises the learning entitlement of students.
Links between Educational Theory and the Australian Curriculum: *Implications for teaching, assessment and reporting*

Making on-balanced judgements

To make these judgments, teachers draw on assessment data that they have collected as evidence during the course of the teaching period. These judgments about the quality of learning are one source of feedback to students and their parents and inform formal reporting processes.

The embedded social interaction and progress through conversation coming from ‘The Theorists’ dictates the need for an active and interactive use of ongoing and embedded formative assessment within classrooms for the purposes of monitoring learning and providing feedback, to teachers to inform their teaching and for students to inform their learning.

If we get this right, we [teachers] will be formally reporting to each other...
“The Theorists” - *Progress through conversation*

Not an exhaustive list but a list of some of the notables:

- Piaget
- Vygotsky
- Wiliam
- Tomlinson
- Claxton
- Hattie [and Yates]
- Dweck
- De Bono
- Van Kraayenood
- McTighe and Wiggins
- ...

Jean William Fritz Piaget – Swiss born 9 August 1896

If logical progress thus proceeds in tandem with that of socialisation is it necessary to say that the child becomes capable of logical operations because his social development qualifies him of cooperation or should one assert on the contrary that it is these individual logical acquisitions that allow him to understand others and thus lead him to cooperate? Since the two sorts of progress are on even terms the questions seems without solution except to say that they constitute the two in dissolvable aspects of a single and identical reality, at the same time social and individual.

Piaget, 1965
Lev Semyonovich Vygotsky -
Russian: born November 5 1896

The child’s higher psychological functions, his higher attributes which are specific to humans, originally manifest themselves in the forms of the child's collective behaviour, as a form of co-operation with other people, and it is only afterwards that they become the internal individual functions of the child himself.

Vygotsky, 1935

Zone of Proximal Development has had impact in applied areas, notably education and led to more research than any other Vygotsky concept

Social source of help- a co-operative enterprise: “Capital of South Dakota...”
“The Theorists” - *Progress through conversation*

Piaget and Vygotsky:

- shared the belief that children are active in their own development, that they arrive at knowledge of the world through **activity**
- acknowledged the role that the **social** world plays in cognitive development
- accepted the role the **individual** and the **environment** as inseparable, albeit Piaget emphasised assimilation and accommodation and Vygotsky, mutuality and analysis of **embedded levels** of socio-historical, group and **individual development**
- agreed that **social interaction** to be a revolutionary rather than a evolutionary process.
"The Theorists" - Progress through conversation

Dylan Wiliam – UK

"I've nothing against grades at the end of the school year. But telling students, after every piece of work, that they're at levels 5, 6 or whatever is bizarre, perverse. The national curriculum levels [UK] were meant to be descriptions of the totality of achievement over an entire key stage, not judgments on individual pieces of work." Assessment, he explains, should be part of a conversation with pupils that helps teachers to decide where lessons should go next. It should be "assessment for learning" (AFL), not "assessment of learning".

Cute: once had only one ambition: to become a famous and successful jazz musician. He turned to teaching only so he could raise enough money to buy amplification equipment.
“The Theorists” - Progress through conversation

Insights into how teachers can divide their time, resources, and efforts to effectively instruct so many students of various backgrounds, readiness and skill levels, and interests.

Her work:

- explains the theoretical basis of differentiated instruction
- explores the variables of curriculum and learning environment
- shares dozens of instructional strategies
- goes inside elementary and secondary classrooms in nearly all subject areas to illustrate how real teachers are applying differentiation principles and strategies to respond to the needs of all learners
“The Theorists” - *Progress through conversation*

But finally, with a lot of creaking, and some complaining, we are realising that **education is about becoming a Learner** rather than a Knower, and that the idea of school as Knowers' Ark has had its day. We are coming to see that developing positive, **transferable learning dispositions** is a subtle but achievable goal that takes time, finesse, and a change of heart by those who **run and work in our schools**. And we are also coming to realise that Learning involves much more than Thinking, and that **powerful learners** need to know how and when to watch and dream, as well as how to pick holes in an argument.

Claxton 2009

Guy Claxton - UK
Irrespective of diverse theories and terminology, feedback has come to be regarded as a vital part in every individual's development and learning progress. To experience feedback presents opportunity for an individual student to map progress toward his or her providence.

Key questions that underpin the successful applications of feedback in student-teacher interactions are always:

(a) Where is the student going? - Role of goals.
(b) Just how is the student getting on right now?
(c) Just what is the next step?
“The Theorists” - *Progress through conversation*

In a **growth mindset** students understand that their talents and abilities can be developed through effort, good teaching and **persistence**. They don't necessarily think everyone's the same or anyone can be Einstein, but they believe everyone can get smarter if they work at it.

By **observing** an individual’s **motivation** and behaviour towards achievement, an individual's general mindset regarding intelligence is revealed.

Dweck, 2012

Carol Dweck- USA
Lateral thinking

Creativity involves breaking out of established patterns in order to look at things in a different way.

If you never change your mind, why have one?

Humour is by far the most significant activity of the human brain.

We need creativity in order to break free from the temporary structures that have been set up by a particular sequence of experience.

An expert is someone who has succeeded in making decisions and judgements simpler through knowing what to pay attention to and what to ignore.

Six Thinking Hats (1985) : lives on...

Edward de Bono -
Maltese born 19 May 1933

I Am Right, You Are Wrong: From This to the New Renaissance: From Rock Logic to Water Logic (1991)
“The Theorists” - *Progress through conversation*

Jay McTighe - USA

Grant Wiggins - USA

Central tenet relates to designing curricula so that students will "uncover" truths--rather than having a teacher or textbook "tell it" to them--students uncover meaning in an authentic way as it relates to a given topic in a discipline...meaning-making--learning--at its best.

Emphasising the teacher's critical role as a designer of student learning, UbD™ works within the standards-driven curriculum to help teachers clarify learning goals, devise revealing assessments of student understanding, and craft effective and engaging learning activities.
“The Theorists” - *Progress through conversation*

Christina van Kraayenood-
Australia

Research focuses on four areas:

(1) literacy and literacy learning of **all students**
(2) the writing of individuals with developmental disabilities and **learning difficulties**
(3) the relationship between metacognition and reading
(4) literacy assessment and reporting.

Emphasis - instructional design, **classroom interventions, support provision**, teaching practices, and early intervention.

Van Kraayenood- 2010
Research to classroom: *going into bat for the students; all of them.*

It is worth considering how much of the essence, elements and intentions of these highly regarded, well travelled, revered and in some cases, fundamental theories enters into Australian classrooms.

At this point, drawing the key points from the modicum of quality research just presented, and our own knowledge and understanding, of the previous 11 ‘theorists’, is more than likely going to identify common threads. Some of these include:

- cooperation
- social and individual activity
- classroom interventions
- individual and the environment
- social interaction
- all students
- embedded levels of individual development
- curriculum levels
- conversations
- needs of all learners
- student backgrounds, readiness and skill levels, and interests
- transferable learning dispositions
- powerful learners
- Monitoring
- feedback
- growth mindset
- persistence
- motivation
- devise revealing assessments of student understanding
Research to classroom: *going into bat for the students; all of them.*

It is worth considering how much of the essence, elements and intentions of these highly regarded, well travelled, revered and in some cases, fundamental theories enters into Australian classrooms.

conversations needs of all learners
Research to classroom: going into bat for the students; all of them.

To this effect – essential monitoring and assessment of all students’ learning and progress through conversation seems a workable requirement.

Conversations that are:
- **Two way**
- **Regular, receptive and responsive**
- **Structured, personalised and incorporated easily into usual – class routines**
- **Manageable**
- **Concise, timely and summarily recorded**
- **Focussed on evidence of student knowledge, understanding and skills**
- **Alignment with the Australian Curriculum achievement standards**
- **Documented, collected and stored on behalf of the student**
- **Inform student and teacher future planning**
- **Linked to accurate and defendable reporting discussions**
Going ‘into bat’ for the students: ensuring student voice and ongoing careful intervention: A matter of entitlement not a slug...
Driving Improvement: *reality tougher than the theory*

- What's out there?

Look at some processes and examples around:

- Quality of Monitoring and Assessment dependency on effective Task Design
- Possibilities generated in the field
This is what’s out there for the individual, regardless of levels of schooling, teacher, learning areas/subjects or type and location of school and so on... *Learner is singular and everyone has their own set of Vygotsky ZPD’s.*
Make Assessment Matter
Students and Educators Want Tests that Support Learning

RECOMMENDATIONS

From the survey data, five recommendations emerge that will place the focus where it belongs—on student learning.

1. District administrators, educators and policymakers need to engage students in policy development processes, especially when making testing mandates at the state, district and classroom levels. Students are remarkably savvy about tests. They recognize that testing plays a valid role in education; they care about their performance and try hardest on tests. They value assessments that are relevant to them, provide timely, meaningful feedback and help them learn. Many students—and their families—are in the dark about new state assessments as well as other new and different kinds of assessments. They want to be informed and engaged.

Recommendation: Educators can help close gaps between student perceptions and knowledge and educator practices by using formative assessment, timely feedback to students and joint goal setting. Educators and district administrators should formally solicit student input as they implement education policies and assessment mandates.

2. Design assessment priorities in support of teaching and learning.

Remarkable alignment exists among the views of students, teachers and district administrators regarding the effective use of assessment; yet all say they are spending too much of their time responding to initiatives that focus elsewhere. Formative assessment also emerges as having the most positive impact on learning, yet it’s least understood and not widely practiced.

Recommendation: Federal, state and district dollars should be reallocated to focus assessment initiatives on informing teaching and learning. Alternate and less costly methodologies for obtaining accountability data should be explored.

3. Establish formal learning opportunities on assessment literacy for every teacher, principal and building administrator. Assessment literacy, in teacher preparation and professional development, is a significant area of need, especially since teachers’ communications are most important to students and parents regarding testing.

Among educators, students and parents, there are substantial gaps in the understanding of different types and purposes of assessment, as well as in the value and usefulness of assessments. This lack of understanding may be fuelling contentious dialogue that is making headlines. At the same time, states and districts are using assessment data to scrutinize every aspect of education. New educators entering the profession are ill-equipped to use assessment data to inform their practice. Students and parents need help navigating the different types of assessment and the purposes they serve. Armed with that knowledge, they can advocate effectively for high-quality assessment that supports student learning.

Recommendation: First, a common vocabulary should be developed for the different types of assessment. Teacher preparation programs and professional development initiatives should focus on assessment literacy, using that common vocabulary, to increase knowledge of the subject and its terms, communicate better with students, parents and other educators and use assessment data more effectively to drive student learning.

4. Use assessment data to inform decision-making.

Without the full understanding of types and purposes of assessment, educators and district administrators are less likely to make informed decisions about using assessment data. Teachers use assessment data for teaching and learning purposes, yet it’s not clear if teachers are making evidence-based decisions. Knowing the types of assessment and their purposes can help teachers better inform their practice.

Recommendation: Educators and district administrators need to improve their understanding of assessment data. Federal, state and district dollars should be reallocated to focus assessment initiatives on informing teaching and learning. Alternate and less costly methodologies for obtaining accountability data should be explored.
Formative assessment

Going ‘into bat’ for the students:
ensuring student voice and ongoing careful intervention:
A matter of entitlement not a slug...
Learning & Motivation through failing better

We need to teach students how to fail better and that learning happens through failure, effort and hard work. A growth mindset is the key to this process. This resource evidence is based on the work of Carol Dweck (Dweck, C.S. (2006). Mindset: The new psychology of success. New York: Random House Inc).
Driving Improvement: *reality tougher than the theory*
- Quality of Monitoring and Assessment dependent on effective Task Design
Driving Improvement: \textit{reality tougher than the theory}
- Quality of Monitoring and Assessment dependent on effective Task Design

<table>
<thead>
<tr>
<th>Grade</th>
<th>Word Description</th>
<th>In Relation to the Achievement Standard, the Student Has Demonstrated …</th>
</tr>
</thead>
</table>
| A | Your child is demonstrating \textbf{excellent achievement} of what is expected at this year level. | • High level capacity to apply knowledge, skills and understandings in new contexts
• Deep understanding of concepts and key ideas and connections between them
• Outstanding development of skills
• Comprehensive knowledge of content |
| B | Your child is demonstrating \textbf{good achievement} of what is expected at this year level. | • Strong capacity to apply knowledge, skills and understandings in new contexts
• Deep understanding of concepts and key ideas
• High level development of skills
• Thorough knowledge of content |
| C | Your child is demonstrating \textbf{satisfactory achievement} of what is expected at this year level. | • Capacity to apply knowledge, skills and understandings in new contexts
• Sound understanding of concepts and key ideas
• Sound development of skills
• Adequate knowledge of content |
| D | Your child is demonstrating \textbf{partial achievement} of what is expected at this year level. | • Capacity to apply knowledge, skills and understandings in familiar contexts
• Some understanding of concepts and key ideas
• Some development of skills
• Basic knowledge of content |
| E | Your child is demonstrating \textbf{minimal achievement} of what is expected at this year level. | • Beginning capacity to apply knowledge, skills and understandings in a familiar context
• Beginning understanding of concepts and key ideas
• Initial development of skills
• Limited knowledge of content |
Transforming the way we deliver a task

“from this... to this...”
Designing tasks where students do the thinking
Discussion

What closed to open techniques have you used?
Closed
Open
Depends
Question 1

How fast can you run 4 kilometres?
Question 2

What was the most important invention of the 20th century?
Question 3

How much does your house weigh?
Question 4

How many countries start with T?
Question 5

Who was Australia’s twelfth Prime Minister?
GOAL – Getting the students doing the thinking in Mathematics

Transforming tasks strategy: From closed to open

<table>
<thead>
<tr>
<th>Technique</th>
<th>Before</th>
<th>After</th>
<th>Reflection: Why and how?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different perspectives</td>
<td>Answer these questions: 4x3, 7x3, 9x3... etc</td>
<td>Think about how you would sort the following multiplication questions into three levels of difficulty: harder, medium, easier. 1x3, 2x3, 3x3, etc up to 12x3</td>
<td>WHY would you... have students share their different perspectives about these questions? To understand that there are different valid ways of approaching a calculation that affect the perception of difficulty. A student who calculates solutions by starting at 1x3 and working through the times tables, may believe 9x3 to be more difficult than a student who sees 9x3 as 3 lots 30. HOW does this develop power/expert learners? Students learn to consider and value others' viewpoints as a source for their learning.</td>
</tr>
<tr>
<td>Many entry points</td>
<td>1. Use unifix cubes to measure the length of your book. 2. How many unifix cubes do you need to balance a pocket of pencil? 3. How many unifix cubes can be stacked in this box?</td>
<td>The answer is: I used 20 unifix cubes to measure it. 1. What might I be measuring? Think of more possibilities. What else? What else? 2. Are all your examples the same type of length? Can unifix cubes be used to measure those same objects in a different way? How? How else? What could an object be if it was measured using 20 unifix cubes?</td>
<td>WHY would you... have students work backwards from the solution? I used 20 unifix cubes to measure it. To challenge students to identify and creatively explore different possibilities rather than follow a directed instruction. HOW does this develop power/expert learners? Students learn to be collaborative and inventive when many entry points are invited. They come to understand that most problems can be approached in many different ways.</td>
</tr>
<tr>
<td>Many pathways</td>
<td>Calculate 39 + 43.</td>
<td>Find at least two different ways to do the calculation. Identify which method is the most efficient for this calculation. Identify which methods are best for mental calculation? Identify if some methods would be better than others for addition sums with larger values.</td>
<td>WHY would you... have students explore multiple methods for solving 30 + 43? To challenge students to move beyond the method that comes most easily to them and require students to create new or varied approaches. This supports the need to analyse and evaluate the efficiency and accuracy of different methods, as students first need to have several different methods, before they can evaluate them. In this example, students could adjust and compensate, so the question becomes 40 + 43, or start with 43, adjust on 40 and subtract 1 etc... HOW does this develop power/expert learners? Students learn to be imaginative and logical as they explore many pathways to a problem. They are empowered by the resulting broader skill set.</td>
</tr>
<tr>
<td>Many solutions</td>
<td>Work out: 4 + 6 =...... 5 + 7 =...... 2 ½ + 4 ½ =...... 7 ¼ + 2 ¼ =......</td>
<td>The solution is 12. What could the question be? Draw at least 20 different solutions. Add the following constraints: 1. You can only use addition. 2. You can only use two values in your calculation. 3. Flipped calculations don’t count as different solutions in this problem.</td>
<td>WHY would you... ask an open question and then add constraints? To change the emphasis from students as receivers of questions to students as creators of possibilities. But at the same time, using constraints to focus the student into creating solutions using thinking that is challenging them. In this example, the constraints challenge students to use fractions and decimals. HOW does this develop power/expert learners? Students learn to be creative, flexible and innovative thinkers when they are challenged to explore many solutions.</td>
</tr>
</tbody>
</table>

Questions to Consider:

1. **Motivation:** How do you ensure that students are engaged and motivated to think deeply about the problems presented?
2. **Strategy:** What strategies do you use to foster critical thinking and problem-solving skills?
3. **Feedback:** How do you provide feedback that encourages students to reflect on their thinking and strategies?
4. **Collaboration:** How do you facilitate group work that promotes the sharing of ideas and strategies?
5. **Technology:** What role does technology play in your classroom to support thinking and problem-solving?

Reflection: Self-reflection is key in developing power/expert learners. How do you encourage students to reflect on their own thinking and learning processes?

Extension: How can you extend the thinking beyond the initial problem to deeper concepts and applications?
GOAL – Getting the students doing the thinking in Mathematics

Transforming tasks strategy: From closed to open

<table>
<thead>
<tr>
<th>Technique</th>
<th>Before</th>
<th>After</th>
<th>Reflection: Why and how?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different perspectives</td>
<td>Answer these questions:</td>
<td>Individually sort the following questions into at least two groups of your own choosing:</td>
<td>Why would you have students make connections and share their different perspectives about the connections that can be made?</td>
</tr>
<tr>
<td> Our thinking can change beyond one point of view.</td>
<td>Half of 32</td>
<td>0.25 x 64</td>
<td>To understand that there are different valid ways of thinking about a calculation. A student, who doesn’t appreciate that multiplying by 0.25 is the same as dividing by 4 and finding one quarter of that amount, will not group it 0.25 with 32, but that student will benefit from trying to explain why other students have made that grouping.</td>
</tr>
<tr>
<td> </td>
<td>1/4 of 48</td>
<td>0.25 x 64</td>
<td>How does this develop powerful/expert learners?</td>
</tr>
<tr>
<td> </td>
<td>32 x 0.5</td>
<td>1/4 of 32</td>
<td>Students learn to consider and value others’ viewpoints as a source for their learning.</td>
</tr>
<tr>
<td> </td>
<td>48 x 0.25</td>
<td>1/4 of 32</td>
<td></td>
</tr>
<tr>
<td> </td>
<td>64 divided by 4</td>
<td>48 x 0.25</td>
<td></td>
</tr>
<tr>
<td> </td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many entry points</td>
<td>Calculate the volume of this rectangular prism:</td>
<td>The volume of the object is 24cm3. What shape could the object be and what are its dimensions?</td>
<td>Why would you have students work backwards from the solution 24cm3?</td>
</tr>
<tr>
<td> Thinking does not have to be linear.</td>
<td></td>
<td>Or: The volume of a rectangular prism is 24cm3. What could its dimensions be?</td>
<td>To challenge students to identify and creatively explore different possibilities rather than follow a directed instruction. To provide a greater range of entry points for students and greater scope to challenge students to progress to new learning.</td>
</tr>
<tr>
<td> </td>
<td></td>
<td></td>
<td>HOW does this develop powerful/expert learners?</td>
</tr>
<tr>
<td> </td>
<td></td>
<td></td>
<td>Students learn to be collaborative and innovative when many entry points are invited. They come to understand that most problems can be approached in many different ways.</td>
</tr>
<tr>
<td>Many pathways</td>
<td>Calculate the area of this shape:</td>
<td>Calculate the area of this shape in at least two different ways.</td>
<td>Why would you have students explore multiple methods for calculating the area of the given shape?</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>To challenge students to move beyond the method that comes most easily to them, and require students to evaluate the range of approaches. This supports the need to analyse and evaluate the efficiency and accuracy of different methods, as students first need to have several different methods in order to evaluate them. The student could use a subtraction approach (e.g. 12 x 10 – 6 x 4). Or they could even split the shape into two rectangles (two triangles) or two trapeziums.</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>HOW does this develop powerful/expert learners?</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>Students learn to be imaginative and logical as they explore many pathways to a problem. They are empowered by the resulting broader skill set.</td>
</tr>
<tr>
<td>Many solutions</td>
<td>Write the linear equation which has: a. gradient of 6 and a y-intercept of 3. b. gradient of 3 and a y-intercept of 2. c. gradient of 5 and a y-intercept of -2.</td>
<td>Write down some equations that have a y-intercept of 3.</td>
<td></td>
</tr>
<tr>
<td> Open ended solution, but thinking stretched by constraints.</td>
<td></td>
<td>1. If you sketched the graph of your equations, which direction would they slope? Are there any solutions that slope the other way? (For example, down/nowards left to right, rather than upwards)</td>
<td></td>
</tr>
<tr>
<td> </td>
<td></td>
<td>2. What if each equation that you write down have a steeper gradient than the previous one?</td>
<td></td>
</tr>
<tr>
<td> </td>
<td></td>
<td>3. What if the coefficient of x cannot be a whole number?</td>
<td></td>
</tr>
<tr>
<td> </td>
<td></td>
<td>4. What if the equation isn’t linear?</td>
<td></td>
</tr>
<tr>
<td> </td>
<td></td>
<td></td>
<td>Why would you ask an open question and then add constraints?</td>
</tr>
<tr>
<td> </td>
<td></td>
<td></td>
<td>To change the emphasis from students as receivers of questions to students as creators of possibilities. But at the same time, using constraints to focus the student into creating solutions using thinking that is challenging them.</td>
</tr>
<tr>
<td> </td>
<td></td>
<td></td>
<td>HOW does this develop powerful/expert learners?</td>
</tr>
<tr>
<td> </td>
<td></td>
<td></td>
<td>Students learn to be creative, flexible and innovative thinkers when they are challenged to explore many solutions.</td>
</tr>
</tbody>
</table>
GOAL – Getting the students doing the thinking in Languages

Transforming tasks strategy: From tell to ask

<table>
<thead>
<tr>
<th>Technique</th>
<th>Before</th>
<th>After</th>
<th>Reflection: Why and how?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socratic questioning</td>
<td>Ask questions that help students dig deeper.</td>
<td></td>
<td>WHY would you use Socratic questioning? To focus on learning new vocabulary in French.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>French</th>
<th>Ordering food</th>
<th></th>
<th>Examples of Socratic questions can be found online. (For example: http://edunet.es.es/eduro/304/summer/04/carola/theses/2007/salet.jpg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maman</td>
<td>Menu</td>
<td>French Menu</td>
<td>English</td>
</tr>
<tr>
<td></td>
<td>mat</td>
<td>un croissant</td>
<td>un pain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>en pain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>une pomme</td>
<td>une orange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>un café au lait</td>
<td>un chocolat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>une banane</td>
<td>une orange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>une orange</td>
<td>une orange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>une poire</td>
<td>un pain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 pâtes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indonesian</th>
<th>Shadow puppet plays (Wayang Kulit)</th>
<th></th>
<th>WHY would you have students explore making different shadows before explaining how to make an Indonesian shadow puppet?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>Shadow Puppets are an ancient form of storytelling in Indonesia. (Wayang means shadow or imagination, and Kulit means skin, because the puppets are traditionally made from leather). Traditional Wayang Kulit stories usually have a moral.</td>
<td></td>
<td>HOW does this develop powerful/expert learners? Students learn to be independent in initiating, directing and reflecting on learning.</td>
</tr>
<tr>
<td>Directions</td>
<td>Use either sunlight or an artificial light source, to explore making interesting shadow shapes. You can use different objects, paper cut outs or parts of your body.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What do you notice?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Discuss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How do you make the shape of the object clear?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How might you make features, such as the eyes and mouth, wobble?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How can you make it move? Can you make different parts move independently?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What else do you notice?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What else can you do?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Watch a video of, 'The Ramayana', as performed by Indonesian puppeteers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Discuss what you notice about the style of Indonesian shadow puppets and the techniques they use.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Make a list of tips that you could give someone about making and using shadow puppets.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Create a shadow puppet play based on the story, 'The Dancing Pig', by Judy Sierra.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Use your tips, the materials and directions provided, to make your own puppets and perform the story.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A different character template for each group member:

- Hands: two sizes
- Light source
- Paper fasteners
- String, dowels or straw
- Optional: coloured pencils

Directions:
1. Paste your character’s template onto card and carefully cut it out.
2. Remember that the shadow is formed from the cut out shape.
3. Colour and decorate your character if required (optional).
4. Use paper fasteners to attach the arms and legs so that they can move.
5. Tape on the dowels or straw.
6. Practice telling the story with the puppets.
7. Turn on the light, go behind the screen, and tell the story!
Driving Improvement: *reality tougher than the theory*

- Quality of Monitoring and Assessment dependent on effective Task Design

Identifying the intellectual challenge of a task

Tick the statements and circle the verbs that best describe the intellectual challenge of your task.
Learning Design – bringing together the ‘what and how’ of the Australian Curriculum
Driving Improvement: reality tougher than the theory - Lessons from the field linking theory and practice
Driving Improvement: *reality tougher than the theory* -Lessons from the field
Driving Improvement: *reality tougher than the theory*

-Lessons from the field-
Driving Improvement: *reality tougher than the theory*

-Lessons from the field-
Driving Improvement: *reality tougher than the theory*
-Lessons from the field

HOW TO CREATE A MANDALA
Driving Improvement: *reality tougher than the theory*
- Lessons from the field
Driving Improvement: *reality tougher than the theory*

-Lessons from the field-

TEACHER RESOURCE

Year 7/8 Australian Curriculum: Technologies - Digital Technologies Task

REAL-WORLD HAZARD: COMMUNITY RESPONSE

NAME:

DUE DATE:

[DURATION: MIN. OF 5 WEEKS]

AUSTRALIAN CURRICULUM LINKS:

Knowledge, Understanding and Skills

- Accurately identify and evaluate authenticity, accuracy and timeliness (ACDTP03)
- Analyse and visualise data using a range of software to create information, and use structured data to model
 aspects of events (ACDTP02)
- Define and characterise real-world problems taking into account functional requirements and economic
 limitations, social, economic and ethical constraints (ACDTP02)
- Evaluate how well developed solutions and existing information systems meet needs, are innovative and
 take account of future needs and workability (ACDTP03)
- Create and communicate interactive ideas and information collaboratively online, taking into account social
 contexts (ACDTP02)
- Plan and manage projects, including tasks, time and other resources required, considering safety and sustainability
 (ACDTP02)

Digital Technologies Achievement Standard

By the end of Year 8, students distinguish between different types of networks and their purposes. They explain
how text, image and audio data can be represented, secured and presented in digital systems.

TASK OVERVIEW:

Use and play around with AutoDesk Homestyler to represent and present the design of your own home.

Choose one of the following real-world hazards and related building structures from the list below to research:

You must then use the information you find to develop a list of design requirements and constraints.

You will then have the chance to be creative by using your information to plan and synthesise a design that
enhances the incorporation of a structure that satisfies the needs of the design in terms of your requirements and
constraints.

Using your design plan for your chosen real-world hazard and AutoDesk Homestyler create a 2D and 3D
presentation of your building structure.

Then you have the opportunity to see what others have created by collaborating with those who have chosen the
same real-world hazard to research, design and create a working building structure.

Together, you will compare and contrast each person's creative design, research other ideas if necessary and
develop as a team specific planning stages to produce the most effective solution to your particular group's
real-world hazard.
Driving Improvement: *reality tougher than the theory*
-Lessons from the field-
Driving Improvement: *reality tougher than the theory*
-Lessons from the field

<table>
<thead>
<tr>
<th>Monitoring and Assessment</th>
<th>Student name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evidence of learning evidence: #1</th>
<th>Evidence of learning evidence: #2</th>
<th>Evidence of learning evidence: #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>● analyse and evaluate data from written sources to inform and create solutions</td>
<td>● analyse and evaluate data from written sources to inform and create solutions</td>
<td>● analyse and evaluate data from written sources to inform and create solutions</td>
</tr>
<tr>
<td>● plan and manage digital projects to create interactive information</td>
<td>● analyse and synthesise evidence in terms of functional requirements and constraints</td>
<td>● analyse and evaluate data from written sources to inform and create solutions</td>
</tr>
<tr>
<td>● analyse and synthesise evidence in terms of functional requirements and constraints</td>
<td>● analyse and evaluate data from written sources to inform and create solutions</td>
<td>● evaluate information systems and their solutions in terms of meeting needs, innovation and sustainability</td>
</tr>
<tr>
<td>● analyse and evaluate data from written sources to inform and create solutions</td>
<td>● evaluate information systems and their solutions in terms of meeting needs, innovation and sustainability</td>
<td>● use appropriate protocols when communicating and working with data group work/joint</td>
</tr>
</tbody>
</table>

Evidence of learning indicates that the student is demonstrating:

- High-level capacity to apply knowledge, skills and understandings in new contexts (Exemplary)
- Strong capacity to apply knowledge, skills and understandings in context (Advanced)
- Reasonable capacity to apply knowledge, skills and understandings in context (Intermediate)
- Beginning capacity to apply knowledge, skills and understandings in context (Novice)

Comments and Areas for development:

Strengths:

Areas for development:
Driving Improvement: reality tougher than the theory - Lessons from the field

<table>
<thead>
<tr>
<th>Mathematics</th>
<th>Science</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER AND ALGEBRA</td>
<td>PHYSICS, MECHANICS</td>
<td>KNOWLEDGE AND UNDERSTANDING</td>
</tr>
<tr>
<td>Students learn and use various techniques for solving algebraic equations, including their derivation from formulas.</td>
<td>Physics, mechanics and energy</td>
<td>Knowledge of nuclear events and their effects.</td>
</tr>
<tr>
<td>MEASUREMENT AND GEOMETRY</td>
<td>SCIENCE INQUIRY SKILLS</td>
<td>Year 10 Mathematics, Science and History Integrated Study</td>
</tr>
<tr>
<td>Students investigate how change and shape are related to angle, area and volume.</td>
<td>Use knowledge of scientific concepts to make predictions and draw conclusions.</td>
<td>Kokoda</td>
</tr>
<tr>
<td>MEASUREMENT AND GEOMETRY</td>
<td>SCIENCE INQUIRY SKILLS</td>
<td>AQA LEVEL 3 Technology Route 2: Nuclear Physics (ACR143)</td>
</tr>
<tr>
<td>Students investigate how change and shape are related to angle, area and volume.</td>
<td>Use knowledge of scientific concepts to make predictions and draw conclusions.</td>
<td>AQA LEVEL 3 Technology Route 2: Nuclear Physics (ACR143)</td>
</tr>
<tr>
<td>MEASUREMENT AND GEOMETRY</td>
<td>SCIENCE INQUIRY SKILLS</td>
<td>AQA LEVEL 3 Technology Route 2: Nuclear Physics (ACR143)</td>
</tr>
<tr>
<td>Students investigate how change and shape are related to angle, area and volume.</td>
<td>Use knowledge of scientific concepts to make predictions and draw conclusions.</td>
<td>AQA LEVEL 3 Technology Route 2: Nuclear Physics (ACR143)</td>
</tr>
</tbody>
</table>

Advanced Standards

1. By the end of Year 10, students are expected to:
 - GSP2: Frequency of Nuclear Events
 - GSP3: Mass-energy equivalence
 - GSP4: Conservation of mass and energy

2. Students are expected to:
 - GSP5: Understand the concept of nuclear fission and fusion
 - GSP6: Explain the process of nuclear fusion
 - GSP7: Describe the role of neutrons in nuclear reactions

3. Students are expected to:
 - GSP8: Develop a model to explain the behavior of subatomic particles
 - GSP9: Describe the properties of isotopes and how they are used in nuclear power generation

4. Students are expected to:
 - GSP10: Understand the role of nuclear power in the global energy mix
 - GSP11: Analyze the environmental and social impacts of nuclear power generation

5. Students are expected to:
 - GSP12: Evaluate the safety and security measures in place at nuclear power plants
 - GSP13: Understand the role of international regulations in nuclear power generation

6. Students are expected to:
 - GSP14: Explain the process of nuclear disarmament and the role of international organizations
 - GSP15: Understand the role of nuclear energy in sustainable development

7. Students are expected to:
 - GSP16: Evaluate the ethical and moral issues surrounding the use of nuclear energy
 - GSP17: Understand the role of public engagement in nuclear energy policy
Driving Improvement: *reality tougher than the theory*

-Lessons from the field

The SACE ‘Trap’-
Knowing the difference between Yr. 7-10 and SACE
The SACE ‘Trap’- Knowing the difference between Yr. 7-10 and SACE

We need to keep in mind the difference between Yr. 7-10 and SACE as it has implications for teaching, assessment and reporting:

• Yr. 7-10 more general
 – E.g., Australian Curriculum: Science covers earth, chemical, biological, agricultural and physical sciences using one broad Achievement Standard per year level and the DECD A-E

• Yr. 11 & 12 more specific
 - E.g., SACE Science covers Physics, Chemical, Biology....... as particular subject areas within science using one specific Performance Standard calibrated A-E
The SACE ‘Trap’- Knowing the difference between Yr. 7-10 and SACE

Australian Curriculum Year 8 Science Achievement Standards

By the end of Year 8, students compare physical and chemical changes and use the particle model to explain and predict the properties and behaviours of substances. They identify different forms of energy and describe how energy transfers and transformations cause change in simple systems. They compare processes of rock formation, including the time scales involved. They analyse the relationship between structure and function at cell, organ and body system levels. Students examine the different science knowledge used in occupations. They explain how evidence has led to an improved understanding of a scientific idea and describe situations in which scientists collaborated to generate solutions to contemporary problems.

Students identify and construct questions and problems that they can investigate scientifically. They consider safety and ethics when planning investigations, including designing field or experimental methods. They identify variables to be changed, measured and controlled. Students construct representations of their data to reveal and analyse patterns and trends, and use these when justifying their conclusions. They explain how modifications to methods could improve the quality of their data and apply their own scientific knowledge and investigation findings to evaluate claims made by others. They use appropriate language and representations to communicate science ideas, methods and findings in a range of text types.
Performance Standards for Stage 1 Physics

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Analysis and Evaluation</th>
<th>Application</th>
<th>Knowledge and Understanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Designs a logical, coherent, and detailed physics investigation. Critically and logically selects and consistently and appropriately acknowledges information about physics and issues in physics from a range of sources. Manipulates apparatus and technological tools carefully and highly effectively to implement well-organised safe and ethical investigation procedures. Obtains, records, and displays findings of investigations using appropriate conventions and formats accurately and highly effectively.</td>
<td>Uses perceptive and thorough analytical skills to examine connections between data, concepts, and issues in physics. Logically evaluates procedures and suggests a range of appropriate improvements. Systematically analyses and evaluates data and other evidence to formulate logical and highly relevant conclusions.</td>
<td>Applies physics concepts and evidence from investigations to suggest solutions to complex problems in new and familiar contexts. Uses appropriate physics terms, conventions, formulae, and equations highly effectively. Demonstrates initiative in applying constructive and focused individual and collaborative work skills.</td>
<td>Consistently demonstrates a deep and broad knowledge and understanding of a range of physics concepts. Uses knowledge of physics perceptively and logically to understand and explain contemporary applications. Uses a variety of formats to communicate knowledge and understanding of physics coherently and highly effectively.</td>
</tr>
<tr>
<td>B Designs a well-considered and clear physics investigation. Logically selects and appropriately acknowledges information about physics and issues in physics from different sources. Manipulates apparatus and technological tools carefully and mostly effectively to implement organised safe and ethical investigation procedures. Obtains, records, and displays findings of investigations using appropriate conventions and formats mostly accurately and effectively.</td>
<td>Uses clear and well-organised analytical skills to examine connections between data, concepts, and issues in physics. Evaluates procedures and suggests some appropriate improvements. Uses mostly logical analysis and evaluation of data and other evidence to formulate consistent and relevant conclusions.</td>
<td>Applies physics concepts and evidence from investigations to suggest solutions to problems in new and familiar contexts. Uses appropriate physics terms, conventions, formulae, and equations effectively. Applies mostly constructive and focused individual and collaborative work skills.</td>
<td>Demonstrates some depth and breadth of knowledge and understanding of a range of physics concepts. Uses knowledge of physics logically to understand and explain contemporary applications. Uses a variety of formats to communicate knowledge and understanding of physics coherently and effectively.</td>
</tr>
<tr>
<td>C Designs a considered and generally clear physics investigation. Selects with some focus, and mostly appropriately acknowledges, information about physics and issues in physics from different sources. Manipulates apparatus and technological tools generally carefully and effectively to implement safe and ethical investigation procedures. Obtains, records, and displays findings of investigations using generally appropriate conventions and formats with some errors but generally accurately and effectively.</td>
<td>Uses generally organised analytical skills to examine connections between data, concepts, and issues in physics. Evaluates some procedures in physics and suggests some improvements that are generally appropriate. Analyses and evaluates data and other evidence to formulate simple and generally relevant conclusions.</td>
<td>Applies physics concepts and evidence from investigations to suggest some solutions to basic problems in new or familiar contexts. Uses generally appropriate physics terms, conventions, formulae, and equations with some general effectiveness. Applies generally constructive individual and collaborative work skills.</td>
<td>Demonstrates knowledge and understanding of a general range of physics concepts. Uses knowledge of physics with some logic to understand and explain one or more contemporary applications. Uses different formats to communicate knowledge and understanding of physics with some general effectiveness.</td>
</tr>
</tbody>
</table>
Driving Improvement: *reality tougher than the theory* -Lessons from the field

<table>
<thead>
<tr>
<th>Mathematics: Vector Task</th>
<th>Performance Task Description</th>
<th>Comments and Advice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Side Tasks

Task 1: Straight Lines

- represent relations on the Cartesian plane and solve linear equations
- apply trigonometry to solve right-angled triangle problems

Task 2: Using Calculations

- represent relations on the Cartesian plane and solve linear equations
- apply trigonometry to solve right-angled triangle problems

Task 3: The Constant for Speed and Shape

- represent relations on the Cartesian plane and solve linear equations
- apply trigonometry to solve right-angled triangle problems

Task 4: Discussion: \(\text{Moving Towards}\)

- represent relations on the Cartesian plane and solve linear equations
- apply trigonometry to solve right-angled triangle problems
- generating ideas, possibilities and actions
- analysing, synthesising and evaluating reasoning and procedures
- control and creative thinking (CSC) organisational elements

Evidence of Learning Indicates that the student is demonstrating:

- A - high level capacity to apply knowledge, skills and understanding in new contexts (tailored)
- B - strong capacity to apply knowledge, skills and understanding in new contexts (general)
- C - capacity to apply knowledge, skills and understanding in new contexts (custom)
- D - capacity to apply knowledge, skills and understanding in familiar contexts (tailored)
- E - beginning capacity to apply knowledge, skills and understanding in familiar contexts (minimal)

Comments and Advice:

- Strengths:
- Efforts:
- Areas for Improvement:
Driving Improvement: *reality tougher than the theory* - Lessons from the field

Year 8 Woodwork (Task 1)

Skill Task: 3 Piece Puzzle

Brief:
You are required to produce a 3 piece wooden puzzle using a variety of hand tools and machines.

Materials available: Radiata Pine

Investigation: (Using the workbook for the class to answer the following questions neatly in your book)
1. What is a coping saw generally used for?
2. List the working qualities of Radiata Pine.
3. Provide some information on all wood finishing.
4. What is a matching gauge used for? Draw a picture of one.
5. Provide some information on what a try square is used for.
6. Explain what a circular consists of and why.
7. List the general grading of abrasive paper (sandpaper)

Designing:
1. Study the technical drawing of the puzzle and think about how you will make it.
2. Complete some practice pieces with the teacher.

Producing:
1. Mark out your work piece.
2. Convince the completion of your article. Check with teacher.
3. Finish your puzzle with an oil coating.

Evaluation:
Comment on: The material you used, what you told the off what difficulties you encountered, what you would change, what you must be to make it better, the quality of your finished article.

Australian Curriculum Achievement Standard demonstrated in your puzzle task:

By the end of Year 8 students explain factors that influence the design of products, services and environments in present and future needs. They explain the contribution of design and technology innovations and enterprises to society. Students explain how the features of technology impact on designed solutions and influence design decisions for each of the prescribed technology contexts. Students create designed solutions for each of the prescribed technology contexts based on an evaluation of needs and opportunities. They develop criteria for success, including sustainability considerations, and use them to judge the suitability of their ideas and designed solutions and processes. They select and select design ideas, make considered decisions and communicate different outcomes using appropriate technical terms and a range of technologies and graphical representation techniques. Students apply project management skills to document and use project plans to manage production processes. They identify and solve problems effectively and provide effective solutions for the intended purpose.

Evidence of learning indicates that the student is demonstrating:

- A: high-level capacity to apply knowledge, skills and understanding in varied contexts (Critical)
- B: medium capacity to apply knowledge, skills and understandings in varied contexts (Strategic)
- C: capacity to apply knowledge, skills and understandings in familiar contexts (Strategic)
- D: low-level capacity to apply knowledge, skills and understandings in familiar contexts (Strategic)
- E: capacity to apply knowledge, skills and understandings in varied contexts (Strategic)

Comments and Solutions: Teacher to complete

Strengths:

Areas for Development:
Driving Improvement: *reality tougher than the theory* - Lessons from the field

Year 9 Topic Test

Ecosystems

<table>
<thead>
<tr>
<th>Skills tested</th>
<th>Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify abiotic and biotic factors in an ecosystem</td>
<td>excellent</td>
</tr>
<tr>
<td>Draw and label key features of a food chain</td>
<td>excellent</td>
</tr>
<tr>
<td>Draw and explain energy and biomass pyramids</td>
<td>very good</td>
</tr>
<tr>
<td>Predict and draw population graphs based on possible changes in an ecosystem</td>
<td>very good</td>
</tr>
<tr>
<td>Discuss human impacts and defend the importance of biodiversity</td>
<td>very good</td>
</tr>
</tbody>
</table>

Comments

Well done, Brodie. You applied concepts correctly in most cases although sometimes needed a bit more detail in some responses. Your essays were informative and followed some of the paragraph structure.

<table>
<thead>
<tr>
<th>Score</th>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>36/46</td>
<td>78%</td>
<td>B+</td>
</tr>
</tbody>
</table>
Activity: A Spanish Conversation

Task Overview:
Choose a Spanish explorer or conquistador (conqueror) from the list below to research. You must then use the information you find to develop a series of Facebook pages for your chosen person.

- Christopher Columbus
- Hernan Cortes
- Ferdinand Magellan
- Francisco Pizarro
- Amerigo Vespucci
- Pedro de Alvarado

Yes, Columbus and Vespucci were from Italy and Magellan was Portuguese, but the Spanish king and queen funded their journeys to the New World.

You have the chance to be creative but your Facebook page must still be factual and use the evidence identified in sources.

Researching:
When researching, you need to select and use a range of primary and secondary sources:
- at least two books and two Internet pages — books can include encyclopedias.

- When researching, think about the following:
 - What they did
 - Where they lived and where they traveled
 - Who they had with them
 - What the purpose of the journey was
 - What they found and how they interacted with the native people.

Presentation:
You must use the Facebook template located in the Year 8 History section. Follow the school’s public drive – make sure you change any key information on the template.

Your Facebook page must:
- use evidence identified in sources
- identify the motives and actions of people at the time
- explain the significance of individuals and groups
- sequence events and developments within a chronological framework
- use historical terms and concepts

You must acknowledge your sources of information in a correctly formatted bibliography.

After all your hard work, make sure you include your name on your document – no name makes it very hard to award marks!
Process-Safeguards for Learning-Unit-Task Design

In constructing assessment tasks for **all learning area**, it’s important to **ensure**:

- the task enables demonstration of **both the achievement standard and the relevant content description**
- the task enables demonstration of the **level of understanding/skill specified in the achievement standard**
- students are provided with **multiple ways to demonstrate their understanding, e.g. write/say/make/do**
- the tasks enable the demonstration of both the achievement standard and the relevant **content descriptions**
- the tasks should be open enough to ensure that **integration of the strands** is evident across the portfolio
- there is a **variety of different types of assessments**
- the task allows students to demonstrate a **broad range of achievement**
- there should be opportunities for **different parts of the achievement standard** to be assessed.
Activity: A Spanish Conversation

Instructions...
- In threes….
- Read through the three pages
- As a group discuss and agree to attribute a rating of one to three to each of the Key Messages 8 point safeguards, ensure you have a clear and defendable judgement and a workable transfer to incorporate for safeguard No. 7
- Select a member of your group to share your ratings and explain your response and task transfer to safeguard No. 7
In conclusion...

The notion that effective design and construction of assessment tasks and incorporating monitoring and assessment conversations within the classroom are essentials, however, remains a matter yet to be fully explored.

What is one area that you would like to be examined in relation to ensuring current and future secondary students gain positive benefits from the Australian Curriculum: A matter of linking key educational theory with grounded practice at the classroom level?
What’s next?

Future directions?

Thanks for the conversations...